Microgrid Operation and Protection

Panel Presentation 2012 Great Lakes Symposium September 25, 2012 by S. S. (Mani) Venkata Alstom Grid Inc. Tel: 520-820-8005 (cell) E-mail: mani.venkata@alstom.com

2012 Copyright Alstom Grid Inc.

1

Outline of Presentation

- Definition and concept of microgrid
- Microgrid operation and control
- Current schemes for microgrid protection
- Modern schemes for microgrid protection
- Conclusions

2012 Convright Alstom Grid Inc.

Microgrid Operation

- Stand alone operation, not ever connected to the larger grid
- Statically connected to the legacy system
- Dynamically connected to the legacy system

 Grid-connected mode
 Islanded mode
- Localized controller for DER dispatch

Microgrid Concept

- Section of distribution system
- Contains multiple Distributed Energy Resources (DER)
 - Controllable loads
 - Storage systems
 - Distributed Generation (DG)
- Seen as an aggregate source or load by the system
- Can be dispatched if seen as source
- Less than 100 MVA capacity
- Usually connected to the primary or secondary distribution system depending on the capacity

Potential Microgrid Protection Schemes

- Microgrid trips offline with the grid
 - Advantages
 - \circ Least expensive
 - $_{\odot}$ Easiest to implement
 - o Disadvantages
 - $\,\circ\,$ No additional reliability benefits
 - Provides overcurrent and overvoltage protection per IEEE 1547
 Standard
- Island the microgrid during a grid fault
 - Advantages
 - Additional customer reliability
 - o **Disadvantages**
 - \circ More expensive
 - Requires adequate protection of islanded microgrid

Protection Issues with Microgrids that can Island

- If microgrids can island and reconnect with the system no legacy protection system is adequate because of:
 - Extremely large variation of load and fault currents between grid connected and islanded modes
 - Bidirectional line flows of current depending on the operating state
- New protection paradigms are therefore required for islanding microgrids

Two Protection Philosophies

- Trip microgrid offline with detection of any fault when islanded
- Trip faulted line to continue microgrid operation
- Advantages
 - $\circ~$ Increased reliability, especially for loop connected microgrids

• Disadvantages

- More Expensive
- Coordination may be difficult
- Challenges
 - Distributed sources
 - Fault current limit of inverter based sources

Communication Assisted Microgrid Protection Schemes

- Differential protection on every line

 Uses digital relays on the end of each line
 segment for detection and isolation
- Differential zones using sensors and breakers
 Can use PMUs or other sensors
- Other centralized protection schemes using PMUs
 - Can be used for unit or zone protection

Optimization of Sensor and Breaker Placement

- Because of the tradeoff between costs of protection equipment and customers effected an optimization can be formulated
- The objective is to minimize the total cost of the protection system:
 - Capital costs from equipment
 - Customer costs from outages

A Centralized Protection Scheme Using Synchronized Measurements For Unit or Zone Protection

Thank you!

Questions?

S. S. (Mani) Venkata Alstom Grid Inc. Tel: 520-820-8005 (cell) E-mail: <u>mani.venkata@alstom.com</u>

